Treat the Patient, Not the Number: Immunoglobulin Replacement for IgG Deficiency

Lauren Sanchez, MD
Clinical Fellow, UCSF Department of Pediatrics
Division of AIBMT

AAIFNC | May 17, 2017

Case

➤ 57 year old F with history of autoimmune disease referred to your office for progressive bronchiectasis

PMHx: Sjogren's, Raynaud's, Chilblains

Study, Times 10-50-53-3A Milk

Infectious history: mild pneumonia x4 (only one recently), bronchitis "every few years", no recurrent OM/sinusitis, skin, GI, or bloodstream infections

> Rare use of antibiotics, no hospitalizations

Case

Immune workup

IgG 1457 (700-1600 mg/dL)

IgG1 1240 (341-894 mg/dL)

IgG2 102 (171-632 mg/dL)

IgG3 99.5 (18.4-106 mg/dL)

IgG4 < 0.3 (2.4-121 mg/dL)

IgA 443 (70-400 mg/dL)

IgM 139 (40-230 mg/dL)

Tetanus titers Protective

Diphtheria titers Protective

Pneumococcal titers 15/23 serotypes, s/p PPSV23

Case

Immune workup

IgG 1457 (700-1600 mg/dL)

IgG1 1240 (341-894 mg/dL)

IgG2 102 (171-632 mg/dL)

IgG3 99.5 (18.4-106 mg/dL)

IgG4 < 0.3 (2.4-121 mg/dL)

IgA 443 (70-400 mg/dL)

IgM 139 (40-230 mg/dL)

Tetanus titers Protective

Diphtheria titers Protective

Pneumococcal titers 15/23 serotypes, s/p PPSV23

IgG2 and IgG4 Subclass Deficiency

The Questions

➤ Your eager fellow asks, "Would you treat this patient with IgG replacement therapy?"

- > Is her IgG subclass deficiency clinically relevant?
- ➤ What are indications for starting Ig?
- ➤ Are there other treatment options?
- > Is there evidence for Ig replacement?

Figure 1. Confused Allergy Fellow

Our current guidelines do not advocate for Ig replacement:

IgGSD can be indicative, but not causative...

Isolated IgG subclass deficiency (IgGSD) is **not** an indication for treatment, and may not be clinically relevant.

Ig replacement *could* be considered for IgGSD <u>if</u> there is evidence of severe infection <u>and</u> impaired antibody response.

There are other less risky and less expensive treatment options.

There is a lack of data to support Ig prophylaxis in IgGSD.

Outline

- > IgG subclass deficiency (IgGSD): a brief review
- Diagnosis of IgGSD
- Expectant Management of IgGSD
- > Treatment of IgGSD
- > The Data for Ig therapy in IgGSD...or Lack Thereof
- Concluding Arguments

Outline

- > IgG subclass deficiency (IgGSD): a brief review
- Diagnosis of IgGSD
- Expectant Management of IgGSD
- > Treatment of IgGSD
- > The Data for Ig therapy in IgGSD...or Lack Thereof
- Concluding Arguments

IgG Subclasses: Similar, but Different

- IgG has four subclasses
- Highly conserved, but with structural differences at hinge region
- Structural differences = varying immunological properties
 - ➤ Antibodies to polysaccharide antigen: mostly IgG2
 - > Antibodies to protein and viral antigen: mostly IgG1 and IgG3

Deficiency does not always mean disorder

> IgG subclass deficiency (IgGSD): deficiency in one or more of the IgG subclasses for age with a **normal total IgG**.

➤ IgGSD is well-described in otherwise healthy children and adults.

Most individuals are asymptomatic.

➤ Despite total IgGSD due to heavy-chain gene deletions, affected individuals can still produce normal antibodies (Buckley, 2002).

Deficiency does not always mean disorder

Sample	Total number	Percent (%)			
population	(n)	lgG1	lgG2	lgG3	lgG4
Healthy children	3854	4.9	19.4	6.3	0.8
Healthy adults	162	8	3	1	1
Adults with suspected antibody defects	1175	28	17	13	9

Adapted from Meulenbroek et al, 2000

IgGSD can be a common finding in patients with frequent infection

IgGSD	Cohort	Number of cases/frequency	Ref
Any	Recurrent infections	21% (101/483)	Aucouturier et al. 1991
Any	Recurrent infections (pediatric only)	13% (7/55)	Visitsunthorn et al., 2011
lgG1	Recurrent infections	4% (119/3005)	Lacombe et al. 1997
IgG2	PID patients	17.6% (16/91) More frequently described in children	Javier et al. 2000
IgG2	Recurrent infections (adult only)	17% (199/1175)	Meulenbroek et al, 2000
IgG3	Recurrent infections (pediatric only)	0-25% (multiple studies)	Meyts et al. 2006
IgG3	Recurrent infections (adults only)	13% (152/1175) More frequently described in adults?	Meulenbroek et al, 2000
IgG4	Recurrent infections (adults only)	15.3% (9/59)	Kim et al. 2016
IgG4	Recurrent infections (pediatric only)	17% (21/127)	Moss et al. 1992

Outline

- > IgG subclass deficiency (IgGSD): a brief review
- Diagnosis of IgGSD
- Expectant Management of IgGSD
- > Treatment of IgGSD
- ➤ The Data for Ig therapy in IgGSD...or Lack Thereof
- **➤**Concluding Arguments

Clinical IgG Subclass Deficiency

		Defined	as	IgGSD	for	age	with
--	--	----------------	----	--------------	-----	-----	------

- □Clinical history of recurrent or severe infections
- □ Laboratory evidence of poor specific antibody responses (preferably to both protein and polysaccharide antigens)

> Diagnostic challenges:

- ☐ No consensus on when to check IgG subclasses
- □Normal ranges of IgG subclasses vary by age and cohort
- ☐ Normal ranges of IgG subclasses vary by lab
- ☐ Low antibody titers can be over-interpreted (Buckley , 2012)

Sinopulmonary infections, asthma, and autoimmunity are frequently reported in symptomatic IgGSD

IgGSD	Clinical Presentations			
	Infections	Other Co-Morbidities		
lgG1	Recurrent sinopulmonary infections Gastrointestinal infections	Asthma, atopic disease, autoimmunity		
lgG2	Recurrent sinopulmonary infections 1 risk of encapsulated organisms (S. pneumoniae)	Asthma, bronchiectasis, autoimmunity (juvenile DM, SLE, Sjogren's)		
lgG3	Recurrent sinopulmonary infections ①risk of Moraxella/Strep pyogenes recurrent erysipelas, HSV	Asthma, chronic bronchitis, autoimmunity		
lgG4	Recurrent sinopulmonary infections	Asthma, atopic disease (allergic colitis), bronchiectasis		

IgGSD can be a sign of other PID or chronic illness

IgGSD	Associated Conditions			
	Primary immunodeficiencies	Other Conditions		
All	- CVID	Congenital cardiac diseaseDiGeorge Syndrome		
lgG1	- Consider THI in infant			
IgG2	Described with IgA deficiencyComplement C2 deficiencySTAT3 deficiency	- Growth hormone deficiency - Febrile seizures		
lgG3	- Chronic neutropenia	- Henoch schonlein purpura		
lgG4	- STAT3 deficiency	- Down Syndrome - Growth hormone deficiency		

Selective IgGSD

- Selective IgG1 deficiency is rare
- Combined IgGSD:
 - IgG1 and IgG3 deficiency
 - IgG2 and IgG4 deficiency
 - IgA and IgG2 +/- IgG4
 - IgA and any IgGSD
 - IgM and any IgGSD

- Common variable immunodeficiency
- Specific antibody deficiency
- Transient hypogam of infancy (IgG1)
- IgA deficiency (IgG2)
- Complement C2 deficiency (IgG2)
- Ataxia-telangiectasis (IgG2, IgG4)
- Chronic mucocutaneous candidiasis (IgG2, IgG4)
- IFN-Gamma deficiency disorders (IgG2)
- STAT3 deficiency (IgG2, IgG4)
- Mannose-binding lectin deficiency (IgG2)
- Chronic neutropenia (IgG3)

- Malignancy (leukemia, lymphoma)
- Viral infection/bone marrow suppression
- DiGeorge Syndrome
- Congenital cardiac disease
- Failure to thrive/cystic fibrosis
- Febrile seizures (IgG2)
- Growth hormone deficiency (IgG2, IgG4)
- Henoch-Schonlein purpura (IgG3)
- Friedrich's Ataxia (IgG3)
- Trisomy 21 (IgG4)

Other Conditions

- Anti-epileptics
 - Carbemazepine
 - Phenytoin
 - Zonisamide
- Steroids
- Sulfasalazine
- Rituximab, imatinib

Drug Effect

- Protein losing enteropathy
- Nephrotic syndrome
- Burns

Outline

- > IgG subclass deficiency (IgGSD): a brief review
- ➤ Diagnosis of IgGSD
- > Expectant Management of IgGSD
- > Treatment of IgGSD
- ➤ The Data for Ig therapy in IgGSD...or Lack Thereof
- **➤**Concluding Arguments

Most patients with IgGSD do not need Ig

Consider trial of IgG replacement therapy

flora

Watchful waiting: it's not just for otitis media

☐ Consider first a diagnosis of THI in a child <5 yrs with IgGSD

Adult concentrations of IgG2, IgG3, and IgG4 may not be

reached until puberty:

Watchful waiting: pediatric IgGSD can improve

☐ Most children with symptomatic IgG2SD and initial poor antibody response will normalize IgG levels and antibody response (Wolpert et al., 1998)

- □ 25% of children (n = 24) with IgGSD and/or specific antibody deficiency demonstrated normalization (Schatorje et al., 2016)
 - \Box Half of original n = 40 in study unreachable for follow up

□ 30-40% of Turkish children (n=59) had normal Ig subclasses by age 6 (Karaca et al., 2009)

Watchful waiting: pediatric IgGSD can improve

□ 30% of children with isolated IgGSD normalized IgG levels by 45-83 months of age (Kutuculer et al., 2007)

If it doesn't improve, it's probably not IgGSD:

Persistent IgGSD in a child >6-8 years old will not likely improve with time.

Symptomatic IgGSD in an adult with antibody impairment will also not likely spontaneously improve.

IgG Subclass deficiency or CVID in evolution?

IgG Subclass deficiency or CVID in evolution?

- ☐ Children with symptomatic and persistent IgG2 subclass levels are likely to have other concurrent immune defects on evaluation (Shackelford et al., 1990)
- □ 11/24 children with IgGSD or SAD had progressive hypogammaglobulinemia in follow up (12-65 months); 4 met criteria for CVID (Schtorje et al, 2010)
- ☐ In 20 patients with selective IgA deficiency that progressed to CVID, 47% also had IgG2 and/or IgG4 deficiency (Aghammohammadi et al., 2008)

The big picture: Key Points

➤ IgGSD can be a transient condition, reflective of infection, inflammation, or even normal growth in children, so it is worth it to WAIT on Ig prophylaxis if clinically feasible.

➤ In persistent symptomatic pediatric IgGSD or adult IgGSD, this may signal evolution of CVID.

➤ Early initiation of Ig replacement could mask evolving humoral defects and delay diagnosis of CVID.

Outline

- > IgG subclass deficiency (IgGSD): a brief review
- ➤ Diagnosis of IgGSD
- > Expectant Management of IgGSD
- > Treatment of IgGSD
- ➤ The Data for Ig therapy in IgGSD...or Lack Thereof
- **➤**Concluding Arguments

Treatment of co-morbid conditions as infectious prophylaxis

Current AAAAI Guidelines recommend treatment of co- morbid allergic rhinitis and asthma as infectious prophylaxis:
Maximize management of allergic rhinitis and asthma
☐ Consider allergy immunotherapy: <u>AIT resulted in complete</u> resolution of chronic effusion/drainage in 85% of cases (n = 127 ears)
☐ Consideration of surgical referral/intervention
☐ Obtaining bacterial culture data when possible can direct tx

> Treatment of comorbid conditions:

☐ Baseline low IgG3 levels improved after treatment of chronic sinusitis (n= 30, Armenaka et al., 1994).

Re-vaccination as infectious prophylaxis

- ➤ Lack of antibody response to both protein and polysaccharide antigens should be documented in all patients with IgGSD.
 - ☐ IgG2SD patients may have uniformly poor polysaccharide responses.

➤ Patients with specific antibody deficiency have <u>decreased</u> <u>sinopulmonary infections</u> following conjugated pneumococcal vaccine (Sorensen et al., 1998)

➤ Recommend protein conjugate vaccines for patients with impaired polysaccharide antibody response (i.e. IgG2): HiB, Pneumococcal, Meningococcal (Buckley, 2002)

And finally, antibiotic prophylaxis as infectious prophylaxis

- □ Patients with IgG3SD (n=22) were treated with prophylactic Bactrim +/- IVIG; **45% had fewer infections after 1 year of Bactrim only** (Barlan et al., 1991)
- □ 72% of children with IgGSD (n=120) had fewer infections with appropriate prophylactic antibiotics only (Wolpert et al., 1998)
- ☐ Frequency of infection decreased (6-20/yr to 2-10/yr) in **85%** of pediatric IgGSD patients on bacterial prophylaxis (n=59) (Karaca et al., 2009).

Close Monitoring, Vaccination, and Antibiotic Prophylaxis are Effective: Key Points

☐ Preventing infection is a good treatment for infection.
☐ Allergists (i.e. you) are key to management of atopy in IgGSD.
☐ Suggest AIT when clinically appropriate.
☐ Conjugated vaccines prevent infection in SAD patients with impaired antibody response, so why not IgGSD?
☐ Antibiotic prophylaxis doesn't work for everyone, but it works
in the majority, and worth a trial

Outline

- > IgG subclass deficiency (IgGSD): a brief review
- ➤ Diagnosis of IgGSD
- > Expectant Management of IgGSD
- > Treatment of IgGSD
- **➣**The Data for Ig therapy in IgGSD...or Lack Thereof
- **➤**Concluding Arguments

IgG Replacement in IgGSD

- > Lack of controlled, blinded clinical studies on Ig for IgGSD:
 - ☐ Single-blinded crossover study (n=43) suggested fewer infections on 1 year Ig prophylaxis compared to placebo. (Sodorstrom T et al., 1991)
 - ☐ Double-blinded crossover study to evaluate IVIG ppx in IgG2SD or SAD was not completed (Herrod HG et al, 1993)

Improvement in some, but not all

- Retrospective studies suggest improvement in some, but not all:
 - ☐ In 132 patients with IgGSD on Ig prophylaxis with >4 respiratory tract infections/yr, infections were decreased in most patients. However:
 - 28 patients had less than 50% reduction in infections
 - 12 patients saw **no effect at all**
 - 5 patients ended Ig prophylaxis prematurely **due to adverse reactions**

Improvement in some, but not all

- Meyts et al. report a case series of 7 patients with isolated Ig3 deficiency and history of frequent infection; 2/7 were not treated with IVIG and remained well (observation only)
- □ Abrahamian et al. report a case series of 13 IgGSD patients with isolated IgG3 deficiency and frequent infection; however enrolled patients may have had other underlying immune defects
 - ☐ Low CD8 T cells, low CD19 B cells, low TLR function, decreased NOI among defects reported.
 - ☐ 2/13 patients stopped IVIG due to no effect

Will potential benefit outweigh risks?

➤ 44% report adverse reactions to IVIG unrelated to rate (Perez et al., 2017)

Administration reactions

- ➤ SCIG local pain, bruising, swelling, and erythema in 75% of patients
- ➤ IVIG systemic headache, aches, chills, fever in up to 15% of patients (up to 50% in all Ig patients)
- > Subset of patients will require premedication with Benadryl and steroids, also not without side effects
- > Phlebitis and line infection could be potential risks

Severe reactions in IVIG administration is a real risk

TABLE XIV. Adverse events with IVIG administration

Frequency	Adverse event
Common‡	Headache; myalgia, back pain, arthralgia; chills; malaise, fatigue, anxiety; fever; rash, flushing; nausea, vomiting; tingling, infusion site pain/swelling, erythema; hypo- or hypertension, tachycardia; fluid overload
Uncommon (multiple reports)	Chest pain or tightness; dyspnea; severe headaches; aseptic meningitis; pruritis. urticaria; thromboembolic*; (cerebral ischemia, strokes; myocardial infarction; deep vein thrombosis; pulmonary emboli; renal toxicity†); hemolytic reactions due to isoagglutinins to Rh or other blood groups; anaphylactic/anaphylactoid reactions
Rare (isolated reports)	Anaphylaxis due to IgE or IgG antibodies to IgA in the immunoglobulin product; progressive neurodegeneration; arthritis; cardiac rhythm abnormalities; transfusion-related acute lung injury (granulocyte antibody mediated); neutropenia; pseudohyponatremia; uveitis; noninfectious hepatitis; hypothermia; lymphocytic pleural effusion; skin (leukocytoclastic vasculitis of the skin, erythema multiforme, urticaria, dyshidrotic eczema, maculopapular or eczematoid rashes, alopecia)

^{*}Related to the procoagulant activity in the IVIG, eg, Factor XIa as well as hyperosmolality.

[†]Majority due to sucrose containing IVIG products, osmotic nephrosis with injury to proximal renal tubules.

[‡]Infusion rate related and/or higher doses, eg, 2 g/kg.

Severe reactions in Ig replacement:

- There is risk of IgA mediated anaphylaxis or anaphylactoid reaction:
 - > IgA deficient patients may have IgE anti-IgA antibodies
 - > IgA deficient patients may have IgG anti-IgA antibodies

➤ Further prospective studies are needed to determine true risk/frequency of anaphylaxis in IgGSD

Severe reactions in Ig replacement:

Thromboembolism (can happen in	n patients ever	n without risk
factors (Perez et al.)			

- ☐ High dose therapy (1000 mg/kg)
- ☐ Cardiovascular risk factors
- ☐ Hypercoagulable states
- ☐ Indwelling catheters
- ☐ Autoimmunity
- ☐ Older age

Will potential benefit outweigh cost?

- Monthly IVIG can be costly:
 - Expense to healthcare system and patients
 - ☐ Lost hours at school and work

- Ounce for ounce, IVIG is more expensive than gold
 - ☐ Highest expense pre-diagnosis in CVID: hospitalization (\$25K/year)
 - ☐ Highest expense post-diagnosis in CVID: medication (\$40.6K/year)

(Sadeghi et al., 2015)

Ig replacement should be a reserved as a last option: key points

IVIG/SCIG is a costly drug compared with vaccinations and antimicrobial medications, and it is not without risks.

➤ IVIG treatment reduces overall costs in CVID, but there is no data in IgGSD to suggest the same.

➤ It shows promise in decreasing infection in small studies, but needs large, controlled, blinded studies to determine sustained efficacy, dosing guidelines and duration of therapy in IgGSD.

Outline

- > IgG subclass deficiency (IgGSD): a brief review
- ➤ Diagnosis of IgGSD
- > Expectant Management of IgGSD
- > Treatment of IgGSD
- The Data for Ig therapy in IgGSD...or Lack Thereof
- > Concluding Arguments

IgGSD: treat the patient, not the number

IgGSD is nothing but a number. Don't treat asymptomatic IgGSD.

Symptomatic IgGSD can be transient or associated with other illness; patients can be closely observed for severe, recurrent infections.

Since sustained efficacy is still unclear, consider IVIG/SCIG only for IgGSD patients with significant history and impaired antibody responses.

> IVIG/SCIG is costly (!!!!), and not without its risks.

Thank you for your attention!

REFERENCES

Abdout N. et al., Efficacy of intravenous gammaglobulin for immunoglobulin G subclass and/or antibody deficiency in adults. <i>Int Arch Allergy Immunol</i> (2009); 149:267-274
Abrahamian F et al., Immunological and clinical prolife of adult patients with selective immunoglobulin subclass deficiency: response to intravenous immunoglobulin therapy. <i>Clin Exp Immunol</i> (2009):159(344-350)
Aghamohammadi A et al. Progression of selective IgA deficiency to common variable Immunodeficiency (2008); 147(87-92)
Albin S and Cunningham-Rundles. An update for the use immunoglobulin for the treatment of immunodeficiency disorders. <i>Immunotherapy</i> (2014);6(10):1113-1126
Aucouturier P et al. Frequency of selective IgG subclass deficiency: a reappraisal. <i>Clin Immunology and Pathology</i> (1992):63(289-91).
Barlan et al. Therapy for patients with recurrent infections and low serum IgG3 levels. <i>J Allergy Clin Immunol</i> (1993):92:352-5.
Buckley et al. Immunoglobulin G subclass deficiency: fact or fancy? <i>Current Allergy and Asthma Reports</i> (2002);2:356-360.
Gharib A et al. , Anaphylaxis to IGIV in immunoglobulin-naïve common variable immunodeficiency patient in the absence of IgG anti-IgA antibodies: successful administration of low IgA-containing immunoglobulin. <i>Allergy Asthma and Clinical Immunol</i> (2016); 12(23)
Hurst DS et al. Efficacy of allergy immunotherapy as a treatment for patients with chronic otitis media with effusion (2008).72(8):1215-23

REFERENCES

Jiang et al., Health related quality of life in patients with primary immunodeficiency disease. <i>Allergy Asthma Clin Immunol</i> (2015);11:27.
Karaca et al., Clinical and laboratory evaluation of periodically monitored Turkish children with IgG subclass deficiencies. <i>Asian Pacific J of Allergy and Immunol</i> (2009);27:43-48
Kim et al., Immunoglobulin G subclass deficiencies in adult patients with chronic airway diseases. <i>J Korean Med Sci</i> (2016);31:1560-65
Knutsen et al., IgG subclass deficiency. In: UpToDate, Post TW (Ed), UpToDate, Waltham, MA. (Accessed on May 15, 2017).
Kutukculer et al., Increases in serum immunoglobulins to age-related normal levels in children with IgA and/or IgG subclass deficiency. <i>Pediatr Allergy Immunol</i> (2007);18:167-173.
Meyts I et al., Isolated IgG3 deficiency in children: to treat or not to treat? Case presentation and review of the literature. <i>Pediatr Allergy Immunol</i> (2006);17(544-550)
Olinder-Nielsen et al., Immunoglobulin prophylaxis in 350 adults with IgG subclass deficiency and recurrent respiratory tract infections: a long term follow up. <i>Scandanavian Journal of Infectious Diseases</i> (2007);39:1, 44-50
Rawat et al. Isolated immunoglobulin G4 subclass deficiency in a child with bronchiectasis. <i>Indian J Pediatr</i> (2014);81(9):932-33.
Perez et al. Update on the use of immunoglobulin in human disease: a review of the evidence. J Allergy Clin Immunol 2017;139:S1-46
Sadeghi B. Economic burden of common variable immunodeficiency: annual cost of disease. (2015):11(5):68-18.
Schatorje et al. Challenge of immunoglobulin G subclass deficiency and specific polysaccharide antibody deficiency – a dutch Pediatric cohort study. <i>J Clin Immunol</i> 2016;36:141-48.

Argument: some symptomatic IgGSD patients who demonstrated improvement with Ig replacement have adequate response to pneumococcal (polysaccharide) vaccination (Abrahamian et al., 2009; Oxelius et al., 1986).
☐ Consider antibodies are being produced but are not effective
☐ Consider use of opsonophagocytic activity assay (OPA) in patients with high suspicion of antibody defect, but normal antibody titers
☐ OPA assay detects for <u>functional</u> antibodies to Strep pneumo after complement mediated opsonization
☐ May be more accurate for impaired antibody response rather than pre & post-vaccine titers

Argument: Ig replacement therapy has been shown to reduce number of infections in IgGSD patients. Why not give everyone a trial on IVIG?
☐ Is it a true diagnosis of IgSD? Have you treated infection? Have other immunodeficiencies been ruled out? A diagnosis of CVID or other PID makes your decision easier.
☐ Who truly benefits? In a small study of 10 patients with IgGSD or SAD (7 with IgGSD), all had fewer infections and increased QoL scores on prophylactic IVIG but:
☐ 4/10 had decreased MBL, 1 had MBL deficiency
☐ 5/10 had polymorphisms in TLR

- Argument: Ig replacement therapy has been shown to reduce number of infections in IgGSD patients. Why not give everyone a trial on IVIG?
 - □ IVIG doesn't work for everybody. Antibiotic prophylaxis also doesn't work for everybody, but it is cheaper and logistically easier to try first.
 - ☐ IVIG is expensive, and we should be mindful of healthcare system costs and patient costs to finance and to quality of life

- Argument: the risks of serious side effects or anaphylaxis during IVIG administration are low; most patients will not have had IVIG before.
 - ☐ Anaphylaxis with first time administration of IVIG has been reported in a CVID patient (Rachid and Bonilla, 2001)
 - ☐ Theoretically increased risk in patients with IgA deficiency (production of IgE anti-IgA and/or IgG anti-IgA)